October 11, 2013

Name	

ID ____

The pn junction shown has a depletion width, W, which extends unevenly into the n and p materials.

a) Which material is most heavily doped? (n) r p)

(3pts)

b) Which net impurity concentration is largest? (N_D) or N_A)

(2pts)

c) On the diagram above, indicate the direction of the built-in electric field, E. (3pts)

3. The diode in the circuits below has a forward voltage drop of 0.6V and a breakdown voltage of 4V. Estimate the current through the diode, I_D .

$$I_D = \underline{O.6 \, MA}$$
(a)

 $I_D = 105 MA$

(4pts)

16:040

(6pts)

October 11, 2013

Name	
1141116	

ID _____

(20pts)

4. For the attenuator circuit shown, assume C_1 and C_2 to be very large (∞) coupling capacitors. Assume D_1 and D_2 are identical diodes.

$$V_N = 17.3mV$$
 (7pts,

b) Draw the small-signal equivalent circuit, replacing the diodes with their small signal resistive model, r_a .

c) Determine the value of v_0/v_S when I=1mA.

$$v_0/v_S = \frac{1/3}{\sqrt{3}}$$
 (7pts)

October 11, 2013

Name _____

ID _____

(20pts)

5. For the circuit below let $k_n' \frac{w}{L} = 0.25 mA/V^2$, $V_t = 1V$ and $\lambda = 0$. Determine V_G , I_D , V_{GS} and V_{DS} .

$$+15V$$
 $R_{0}=16K$
 $K_{0}=16K$
 $K_{0}=16K$
 $K_{0}=16K$

$$V_G = \underbrace{5} \text{ (4pts)}$$

$$V_{GS} = \frac{3V}{(8pts)}$$

$$I_D = 0.5 mA \qquad (4p(s))$$

$$V_{DS} = \underbrace{5V}_{(4pts)}$$

October 11, 2013

Name ____

ID _____

(20pts) 6. a) For the circuit shown, determine the value of the drain current, I_D , for V = 1V.

$$I_D = /MA \qquad (4pts)$$

b) Determine V_{GS1} and V_{DS1} for transistor Q_1 .

$$V_{GS_1} = \frac{2V}{(2pts)}$$

$$V_{DS_1} = 1.0V$$
 (3pts)

c) Does Q_1 operate in the {saturation triode} region?

(3pts)

d) Determine the required aspect ratio, $(W/L)_1$, for transistor Q_1 .

$$(W/L)_1 = 2.5 \qquad (8pts)$$