October 11, 2013 | Name | | |------|--| | | | ID ____ The pn junction shown has a depletion width, W, which extends unevenly into the n and p materials. a) Which material is most heavily doped? (n) r p) (3pts) b) Which net impurity concentration is largest? (N_D) or N_A) (2pts) c) On the diagram above, indicate the direction of the built-in electric field, E. (3pts) 3. The diode in the circuits below has a forward voltage drop of 0.6V and a breakdown voltage of 4V. Estimate the current through the diode, I_D . $$I_D = \underline{O.6 \, MA}$$ (a) $I_D = 105 MA$ (4pts) 16:040 (6pts) October 11, 2013 | Name | | |---------|--| | 1141116 | | ID _____ (20pts) 4. For the attenuator circuit shown, assume C_1 and C_2 to be very large (∞) coupling capacitors. Assume D_1 and D_2 are identical diodes. $$V_N = 17.3mV$$ (7pts, b) Draw the small-signal equivalent circuit, replacing the diodes with their small signal resistive model, r_a . c) Determine the value of v_0/v_S when I=1mA. $$v_0/v_S = \frac{1/3}{\sqrt{3}}$$ (7pts) October 11, 2013 Name _____ ID _____ (20pts) 5. For the circuit below let $k_n' \frac{w}{L} = 0.25 mA/V^2$, $V_t = 1V$ and $\lambda = 0$. Determine V_G , I_D , V_{GS} and V_{DS} . $$+15V$$ $R_{0}=16K$ $K_{0}=16K$ $K_{0}=16K$ $K_{0}=16K$ $$V_G = \underbrace{5} \text{ (4pts)}$$ $$V_{GS} = \frac{3V}{(8pts)}$$ $$I_D = 0.5 mA \qquad (4p(s))$$ $$V_{DS} = \underbrace{5V}_{(4pts)}$$ October 11, 2013 Name ____ ID _____ (20pts) 6. a) For the circuit shown, determine the value of the drain current, I_D , for V = 1V. $$I_D = /MA \qquad (4pts)$$ b) Determine V_{GS1} and V_{DS1} for transistor Q_1 . $$V_{GS_1} = \frac{2V}{(2pts)}$$ $$V_{DS_1} = 1.0V$$ (3pts) c) Does Q_1 operate in the {saturation triode} region? (3pts) d) Determine the required aspect ratio, $(W/L)_1$, for transistor Q_1 . $$(W/L)_1 = 2.5 \qquad (8pts)$$